
Improvements on EGOS-2000
Leo Liang <wl353@cornell.edu>

Supervising Faculty Member: Robbert van Renesse <rvr@cs.cornell.edu>

Summary

The project aimed to improve EGOS-2000 by incorporating some of the C standard libraries into the
OS, specifically math.h, stdlib.h, stdio.h, ctype.h, and string.h. This allowed the operating
system to support these standard library functions and made it easier for developers to write
applications for EGOS-2000.

Current Issue

One of the limitations of EGOS-2000 is that the majority of the C standard libraries are missing in the
project. This can make it difficult for developers to write applications for the operating system, as they
may not have access to the standard functions that they are used to using. For example, if a developer
wants to use the standard math library to perform trigonometric calculations, they may not be able to
do so in EGOS-2000 without implementing the library themselves. This can be time-consuming and
may result in code that is less efficient than if the standard library had been available. Additionally,
the lack of standard libraries may limit the types of applications that can be developed for
EGOS-2000, which could impact its adoption and popularity.

One seemingly obvious solution to this issue is to use the implementation provided by the RISC-V
compiler directly in user applications. However, after experimenting with this idea, it is shown that
this would not work well with EGOS-2000 due to two reasons. Firstly, the limitations of EGOS-2000
user application file size present a significant challenge to using the compiler-provided C standard
libraries in user applications for EGOS-2000. Here is an example application that opens a file and
then closes it:

#define LIBC_STDIO // This is necessary to use the compiler-provided stdio.h.
#include "app.h"
#include <stdio.h>

int main(int argc, char** argv) {
FILE *file = fopen("README", "r");
fclose(file);
int int_buffer;
sscanf(argv[0], "%d", &int_buffer);
printf("Integer I read: %d\r\n", int_buffer);
return 0;

}

However, when compiling this application, one would get this error message: (tested on macOS)

/Users/test/riscv64-unknown-elf-gcc-8.3.0-2020.04.1-x86_64-apple-darwin/bin/../l
ib/gcc/riscv64-unknown-elf/8.3.0/../../../../riscv64-unknown-elf/bin/ld:
build/release/myapp.elf section `.text' will not fit in region `ram'
/Users/test/riscv64-unknown-elf-gcc-8.3.0-2020.04.1-x86_64-apple-darwin/bin/../l
ib/gcc/riscv64-unknown-elf/8.3.0/../../../../riscv64-unknown-elf/bin/ld: region

mailto:wl353@cornell.edu
mailto:rvr@cs.cornell.edu

`ram' overflowed by 2232 bytes

The compiler complains that the application size is too big, and that is the result of all the helper
functions in the compiler stdio implementation that need to be included. One way to resolve this is to
increase the ram region in app.lds, but this would require significant changes to the OS as memory
mapping would be modified from increased application size.

To address the size limit issue, the standard libraries must be part of the operating system itself as
much as possible rather than being compiled into the executables of user applications. This approach
would allow the standard libraries to be used without significantly increasing the size of individual
executable files beyond the limit.

Another limitation is the missing compatibility layer between the C standard libraries and the
operating system. Some of the functions provided in the C standard libraries are closely tied to the
operating system, such as those in stdio.h. If the compiler-provided implementation of these
functions, like “fopen” and “fread,” is directly used in user applications, it will result in
compile-time errors. Using the same example above, the compiler shows a second error message in
addition to ram overflowing:

/Users/test/riscv64-unknown-elf-gcc-8.3.0-2020.04.1-x86_64-apple-darwin/bin/../l
ib/gcc/riscv64-unknown-elf/8.3.0/../../../../riscv64-unknown-elf/bin/ld:
/Users/test/riscv64-unknown-elf-gcc-8.3.0-2020.04.1-x86_64-apple-darwin/bin/../l
ib/gcc/riscv64-unknown-elf/8.3.0/../../../../riscv64-unknown-elf/lib/rv32i/ilp32
/libc.a(lib_a-openr.o): in function `.L0 ':
openr.c:(.text+0x28): undefined reference to `_open'

Here, the compiler shows that it is missing the implementation of “_open”. This is OS-dependent
code that the compiler C standard library needs to know how to open a file. To address this, a
compatibility layer needs to be implemented that provides a bridge between the C standard libraries
and the operating system. This layer would allow developers to use the standard libraries in their
applications without running into compatibility issues with the operating system.

Solution Proposed

The proposed solution consists of two parts: OS-independent functions and OS-dependent ones.
OS-independent functions are standard C library functions that are not closely tied to the operating
system and do not require a compatibility layer to work in user applications. Examples of such
functions include the ones in stdlib.h and math.h. While these functions do not concern the
compatibility layer issue mentioned previously, using them in user applications would still cause the
size of the resulting executable files to exceed the size limit of the operating system, as the compiler
implementation can be quite heavy.

To address this issue, the proposed solution is to include the implementations of these OS-independent
functions in the earth layer. The earth layer is the layer EGOS-2000 that sits between the hardware
and the grass layer. It provides a much more generous size limit that can effectively hold all the
implementation. By including the implementation of these functions in the earth layer, all user
applications can reference the same code, eliminating redundancy and promoting code reuse. It

ensures that all applications can use the standard libraries without increasing their size beyond the
limit.

Custom header and source files are included to sit between the user application and the earth
implementations. The chart below shows the flow of how these function calls work:

Note that the header and source files here are not the ones from the compiler. Instead, they are custom
code that provides the familiar interface of the C standard library but actually serve as links to the
earth interface. At its foundation, the implementations of these functions are provided by the compiler.
Because compiler implementations are well-tested, this minimizes the probability of bugs. It also
prevents unnecessary reimplementation of C standard libraries.

OS-dependent functions, on the other hand, rely on code that is specific to EGOS-2000. An example
of such a function is "fopen" in stdio.h. In order to implement this in EGOS-2000, one needs to
make a directory request to the grass layer and be re-routed to the sys_dir server process. For this
reason. these functions cannot be included in the earth layer like the OS-independent ones.

To address this issue, the OS-dependent functions are reimplemented in the header and source files.
The custom implementation makes requests to the grass layer so that the handlers in server processes
can fulfill those requests and return the result. The chart below shows the flow of how it would work:

Because the custom implementations are stored in the header and source files that would be compiled
into the user application, this would mean that there will be a size increase on the executable.
However, the reimplementation is much more lightweight than the compiler ones, thus the size impact
would be minimal while retaining behaviors close to the compiler implementation.

List of implemented library functions

Header file Function OS
dependent

Header file Function OS
dependent

ctype.h isalnum NO stdio.h printf YES

isalpha NO vprintf YES

iscntrl NO sprintf YES

isdigit NO vsprintf YES

isgraph NO fprintf YES

islower NO vfprintf YES

isprint NO scanf YES

ispunct NO vscanf YES

isspace NO sscanf YES

isupper NO vsscanf YES

isxdigit NO fscanf YES

tolower NO vscanf YES

toupper NO fopen YES

stdlib.h abs NO freopen YES

div NO fread YES

labs NO fwrite YES

ldiv NO fclose YES

rand NO fflush YES

srand NO fgetpos YES

atof NO fsetpos YES

atoi NO ftell YES

atol NO fseek YES

strtod NO rewind YES

strtol NO getchar YES

strtoll NO gets YES

strtoul NO putchar YES

bsearch NO puts YES

qsort NO clearerr YES

mblen NO feof YES

mbtowc NO ferror YES

wctomb NO perror YES

mbstowc NO string.h memcmp NO

wcstombs NO strcmp NO

calloc NO strcoll NO

malloc NO strncmp NO

realloc NO strxfrm NO

math.h fabs NO strcat NO

ceil NO strncat NO

floor NO memcpy NO

fmod NO memmove NO

exp NO strcpy NO

frexp NO strncpy NO

ldexp NO memchr NO

log NO strchr NO

log10 NO strcspn NO

modf NO strpbrk NO

pow NO strrchr NO

sqrt NO strspn NO

acos NO strstr NO

asin NO strtok NO

atan NO memset NO

atan2 NO strerror NO

cos NO strlen NO

cosh NO

sin NO

sinh NO

tanh NO

Additional changes

- The size of the earth layer interface is slightly increased to fit the additional functions.
- Another structure called “extension” is added alongside “earth” and
- cd and sys_dir have been modified to allow better directory lookup. For example, the

following commands, which were previously not permitted, are now possible:
> cd ../..
> cat home/yunhao/README

- “ed” from EGOS has been ported to EGOS-2000 for file editing.

Limitations

The proposed solution has a series of limitations:

- The implementation of the C standard library functions in EGOS-2000 is not comprehensive,
meaning that not all functions are included. This poses a challenge for developers who require
the use of functions that are not implemented, as code that uses those functions will not work
as expected. In such cases, developers must either find an alternative solution or manually
update the code in multiple places to allow the use of another C standard library function that
was not previously included. This can be a time-consuming and error-prone process,
especially for complex codebases.

- To incorporate a C standard library function that was not previously included, updating the
code in multiple places is necessary. This could take significant effort if one wants to allow
the use of a significant amount of library functions.

- Renaming, moving, copying, or creating files are not implemented in this project as the OS
does not currently support it natively.

- OS-dependent code is reimplemented in the header and source files to work in user
applications. However, these implementations have not gone through the same rigorous
testing as the compiler implementation and may contain bugs or exhibit behavior that is not
consistent with C standards. Developers must be aware of this when using OS-dependent code
and ensure that their applications are tested thoroughly to identify and fix any issues.

- Modifying the earth layer in EGOS-2000 means that the ARTY board needs to be reflashed.
This process can be time-consuming and inconvenient, and switching between this extended
EGOS-2000 and the standard EGOS-2000 is somewhat cumbersome.

- Memory leak exists that would cause commands that happen after one to fail.

